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Elearonics Sector, Malvern, UK 
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AbstracL We examine equivalent forms of the current-voltage relationship applicable to 
mesoscopic superconductors and use one of these to derive general conditions for the sign 
of the conductance in a four-probe measurement. For disordered systems, with well separated 
voltage probes, where the nod-state  conductance is positive, we predict that the sign of the 
1ongiNdinal four-probe conductance of superconducting wires can be reversed by varying an 
applied magnetic field, and that at certain critical values of the field. the conductance passes 
through a singularity. 

1. Introduction 

During the past few years, descriptions of charge transport in mesoscopic superconductors 
have focused mainly on either normal-superconducting (N-s) boundary conductances, twc- 
probe conductances of N S - N  structures or the Josephson effect in s - N s  systems [l-171. 
There currently exist no detailed theoretical results for multi-probe measurements, even 
though the multi-probe conduttance formulae to be evaluated have been known for some 
time [Z, 41. It is well known that in phase-coherent, normal structures both positive and 
negative four-probe elechical conductances can occur, whereas the corresponding two- 
probe conductances are necessarily positive [18, 191. More recently it was shown that 
the longitudinal conductance of a normal disordered wire can have arbitrary sign only if the 
disorder is sufficiently weak, whereas in superconductors negative conductances can arise 
whatever the degree of disorder [ZO], suggesting that superconductivity itself can induce 
sign changes. In this paper we present a detailed analysis of the sign of the four-probe 
conductance of phase-coherent structures. 

A key complication which arises when deriving formulae for transport properties 
in interacting mesoscopic systems is the need to impose detailed balance in the steady 
state. Perhaps the simplest example of this arises within mean-field BCS theory, when 
describing the effect of sbperconductivity on transport properties, where it is known [Z] 
that the condensate chemical potential p must be chosen self-consistently to ensure charge 
conservation. For non-interacting systems [I91 this complication does not arise, and for 
simple NS interfaces can be avoided by choosing the superconductor as one of the external 
voltage probes [l]. However, for multi-probe measurements in which the current-carrying 
leads are normal 12-41, this minimal level of self-consistency is crucial. 

One consequence of the absence of automatic quai-particle charge conservation 
is the explicit appearance of p in current-voltage relations applicable to mesoscopic 
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superconductors. For a system connected by perfect normal leads to N external reservoirs 
at potentials uj ,  i = 1, 2, . . . , N ,  these take the form [2,4] 
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where U = b/e, Zi is the current carried by lead i and aij is a matrix element formed from 
linear combinations of quasi-particle reflection and transmission coefficients [Z]. 

The appearance of f i  = eu on the right-hand side of equation (I.) is a manifestation of 
two key features; first, there exists a superconducting condensate possessing a well-defined 
chemical potential; and second, the condensate acts as a source and sink of charge. Equation 
(I) is extremely general and contains all known results for phase-coherent superconducting 
and non-interacting normal systems as special cases. It should be noted that except in a 
trivial adiabatic limit, it does not describe measurements in which superconductors with 
different condensate potentials are present, since in such structures order parameter phase 
differences varying at the Josephson frequency are present and therefore a theory based on 
time-independent scattering theory cannot be applied. 

One can recast equation (1) in many equivalent forms, some of which are particularly 
useful when dealing with specific problems. In the following section, we highlight two 
such forms, one of which is used in section 3 to address the question of negative four-probe 
conductances in normal and superconducting structures. The analysis of section 3 suggests 
that the behaviour of longitudinal four-probe conductances in the presence of magnetic 
fields in the localized regime, should be markedly different for normal and superconducting 
systems. and in section 4 we show the results of a numerical simulation in two dimensions, 
which illustrate these differences. 

2. Equivalent forms of the current-voltage relation 

Our motivation for rewriting equation (1) stems from the fact that in the presence of Andreev 
scattering, the sum of elements of each row and column of the matrix (nj j )  are non-zero. 
In [4], the quantities 

N 

xj = ajj 

j 

and 
N 

yj  = aij 
i 

(3) 

were therefore identified as natural variables, which characterize the effect of Andreev 
scattering on transport properties. In another context, Biittiker has further noted that an 
approximate description of finite-frequency transport [24] yields an equation of the same 
form as (I), with non-zero parameters xi, y j .  In the latter context these quantities were 
referred to as emissiviries and injectivities respectively. 

Starting from equation (l), one can write down two admittance matrices, with elements 
[aij} and {a;}, satisfying 

N+I 
zi = a;u, i = l , Z ,  ..., N f l  

j = l  
(4) 
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I; = 2 Ui jV j  

N 

i = 1 , 2 ,  ..., N 
j=1  

where in equation (4) we have written U N + ]  = v and 
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(5) 

with IN+, the total current flowing out of the, superconductor. For i, j ,< N one finds 
a!’. = uij, ailN+I = -xi, u : + ~ , ~  = -yj and u ~ + l . N + I  = s, where ‘I  

N N 
s = c y j = c x i .  

j= l  id 

Clearly equation (4) treats the superconductor on the same footing as other reservoirs and 
is particularly relevant when p is determined by external means, as in a typical boundary 
resistance measurement. 

Equation (5) on the other hand is more relevant when the net current into the 
superconductor is zero, in which case ~r. can be eliminated through the condition 

to yield 

(6) a!. = aii - xi y j / s .  ‘J 

Since 

the formal structure of multi-probe conductance formulae based on mahix elements {ab} 
is identical for normal and superconducting structures. It is interesting to note that for 
situations in which mere is no quasi-particle transmission between different reservoirs, the 
matrix ( q j }  is diagonal and therefore at first sight equation (1) suggests that charge does not 
flow between different reservoirs. Such a conclusion would be incorrect, because reservoirs 
are coupled through the steady-state condition 

where Indeed for the case of a 
superconductor connected to two normal probes, for which N = 2 and I3 = 0, one finds 
I1 = -I2 and therefore a non-zero current, mediated by the superconductor, flows from 
probe 1 to probe 2.. Equations (4) and (5) yield the same result, but since {uij} and [a!‘.} 
are not diagonal, the coupling of reservoirs in the absence of quasi-particle transmission IS 
more transparent. 

is the current leaving the superconductor. 

‘1. 
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3. Analysis of the sign of four-probe conductances 

In the presence of N = 4 probes, writing 2; = -4 = Iij  and for k,I # i, j, 
choosing Ik = Ij = 0, one defines the four-probe conductance Gij.kl through the relation 
Gij.kt = I i j / ( &  - fi). Starting from equation (Z), or equivalently equations (4) or (5), this 
expression can be evaluated once the matrix elements (ail} are known. In units of 2ez /h ,  
these are given by [4] ~ i , j # i  = T; - T:, aii = Mi + RA - Ro, where T$ and RY are 
normal bmsmission and reflection coefficients for quasiparticles incident at probe j, and 
T,; and R> are the corresponding Andreev coefficients [Z, 41. At zero temperature these 
quantities are the scattering probabilities of zero-energy quasi-particles, whereas at finite 
temperature they are thermal averages of such probabilities. At zero temperature Mi is the 
number of channels in probe i and at finite temperature it is the corresponding thermally 
averaged number of channels. Since 
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the matrix A has the property that any diagonal element is necessarily greater than or equal 
to the sum of any subset of the other elements on the same row and similarly for any subset 
of elements in the same column. The emissivities and injectivities are given by 

Examples of A’ for a device connected to two, three and four probes are shown in table 
1. The formulae in the table illustrate that the diagonal elements are always positive; a 
result which is proved in the appendix. As a consequence, raising the potential of a reservoir 
causes more net current to be drawn from that reservoir. In contrast, the examples in table 1 
show that the off-diagonal elements may be of either sign, and thkrefore raising the potential 
of one reservoir may result in an increase or decrease in the net current supplied to each of 
the others. This is unlike the situation for normal materials, where the off-diagonal elements 
of a’ are always negative, so raising the potential of one reservoir necessarily results in an 
increase in the net current supplied to each of the others. The requirement that the rows 
and columns of A‘ sum to zero also implies that for two probes, the off-diagonal elements 
are necessarily negative, whereas no such restriction arises for N > 3. As a consequence 
superconductors connected to three or more probes may exhibit new phenomena which 
are absent from simpler two-probe smctures. To illustrate this feature, it is convenient to 
rewrite the multi-channel conductance formulae derived in [Z, 41, in terms of elements a; 
rather than aij. Since the N equations of (5) are linearly dependent we eliminate the Nth 
equation and write 

where ak is the minor of (a‘} obtained by deleting row and column N. The inverse of 
equation (7) is 
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where d = det a',,, bij is the ijth element of the cofactor matrix of a',, and if N = 2 we 
define b;, = 1. It is shown in the appendix that the value of d is independent of which 
row and column are deleted from equation (5), even though the cofactor matrix is not. For 
simplicity we compute G i j , ~  by taking k = N - 1 and I = N .  This choice simplifies the 
working but has no physical significance as we may label the probes in any order. From 
equation (8), writing Ii = ~ - I j ,  IX = 0 fork # i, j, and defining bi.N = bN.2 = 0, yields 

G~.N-I .N = d/(bj,N--l - bi.N-j). (9) 
The determinant d can most easily be computed using the relation 

where X, =T: - 

where AN is the minor obtained by deleting row and column N from A. This relation is 
also proved in the appendix. 

a k r  a; cm bc Muted by sym+ry 
~~ 

Table 1. Expressions for A' for simple systems. Top row: a single superconducting wire. 
Middle row: a device connected to three probes. with the dominant scattering processes Andreev 
reflection of particles incident from reservoir 3 and Andreev transmission between probes I and 
2. This device illustrates the fact that off-diagonal coefficients of A' may be positive. Bottom 
row: a superconducting wire in the localized limit wilh WO probes at each end of wire. 

I I A I A' I 
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and using a computer algebra package to evaluate the sign of d for three and four probes. 
In both cases the result was a sum of positive products of transmission probabilities. For 
two probes, d = U;,  and remains positive. For more than four probes, the analysis was 
not possible, because the number of terms in the resulting expression for d exceeded the 
memory of our available computers. 

We are now in a position to make firm statements about the sign of G for different 
arrangements. Result (ll), along with the appendix, shows that a two-probe conductance 
is always positive, For the three-probe case, the sign of G,;! tells us the sign of the 
effective transmission between the current-only probe and the voltage-only probe. For a 
normal material the threeprobe conductance is always positive, but for a superconductor, if 
Andreev scattering dominates, it may be negative. The sign of the four-probe conductance 
in normal systems has been the subject of much experimental and theoretical work [21, 
7-21, For a normal system, equation (13) reduces to Gjj& = d/(TkiEj - GjEj), which was 
interpreted by Avishai and Band [22] as showing that if the cument from probe i has a 
high probability of being transmitted to voltage probe k ,  while Thj is small, then reservoir 
k will need to supply a large current to ensure that zk = 0, so vk % Vj. A similar argument 
shows that if zj > Tkj then Vj iz: V,, so fi. > v( and G;j.kl is positive. This situation can 
be understood by reference to the long wire shown in figure l(a), connected to reservoirs 
labelled 1, 2, 3, 4. If we choose i = ~ l ,  j = 2, k = 3 and 1 = 4 then Gjj,k( measures 
the longitudinal conductance along the wire which would be expected to be positive if the 
transmission along the wire is weak. 

In the presence of Andreev scattering, the sisn of Gij,kl has a similar interpretation, 
which allows one to understand the physical reason for a recent prediction [ZO] that 
the longitudinal conductance of a superconducting wire in the localized regime can be 
negative, whereas the corresponding normal-state conductance is positive. As indicated by 
the expressions in the third row of table 1, whereas for strongly disordered normal materials 
U;, and U& vanish, in the presence of Andreev scattering they are both negative and can 
have larger magnitudes than ai2 and ail. Hence negative conductances occur because the 
effective coupling between probes at opposite ends of the wire is greater than that across 
the wire. 

N K Allsopp et a1 

4. Magnetoconductance of a wire 

While the above analysis demonstrates that sign changes due to the onset of 
superconductivity are possible, it does not identify systems for which such changes are 
probable. In this section we examine in more detail the longitudinal conductances G12.3~  
and G14.32 of long normal and superconducting wires of the kind shown in figure l(a) and 
show that the sign of these conductances may be reversed by the application of a magnetic 
field. In [ZO], it was shown that in the limit of vanishing quasi-particle transmission along 
the wire, Gfz,w is given by 

with a similar expression for G14,32. In this expression, d n  and dBR are positive quantities, 
so the crucial factor determining the sign of G is the relative strengths of the normal and 
Andreev scattering probabilities across the wire. If the wire is thin, these coefficients will be 
appreciable. Numerical work [23, 251 has suggested that in this limit, for homogeneously 
disordered samples with no applied magnetic field, normal transmission will dominate. 
Therefore in order to observe a sign change the geometry must be chosen to enhance T A .  
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Figure 1. (0) A wire connected to four extemal probes. (b) A possible trajectory of an Andreev- 
reflected quasi-panicle incident from probe I, which has a high probability of beiog "itted 
into probe 3. 

Such a geometry is shown in figure I@),  for which the probes at each end are situated 
opposite each other, but a potential barrier prevents direct transmission across the sample. 
In the presence of a magnetic field it becomes possible for a particle incident from probe 
1 to evolve into a hole emitted into probe 2, via Andreev refiction at the superconducting 
interface, as illustrated by figure 1 (b).  Since the angle 6' in the figure increases with applied 
magnetic field, one expects the conductance to reverse sign over certain ranges of B ,  such 
that 0 is sufficient to redirect a high proportion of Andreev reflected particles from probe 1 
into 2. 

Simulations were performed using the tight-binding model and with the transfer matrix 
based algorithm described in [4]. Because this algorithm imposes a current flow at the 
extemal connections perpendicular  to the slices, the precise geometry simulated is shown 
in figure 2. The dimensions (labelled in the figure) used were i = 5 sites, j = 5 sites, 
k = 30 sites, and the potential barriers at the ends of the wires were one site wide x 
five sites long. Quasi-particles were prevented from entering the potential barriers by large 
on-site potentials in the barrier region. In the shaded region the site potentials were chosen 
at random from a uniform distribution between limits -6U and 6U, and when required a 
constant superconducting order parameter A = 0.2 was assumed. 
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1 2 
Ann/ . . .  

Ii 
A s 4 

Figure 2. The wire modelled in the numerical simularions. The black areas are potential 
barriers which quasi-particles are unable to penelrate; the shaded area is the region in which 
normal potential disorder and a constant order parameter exist 

Typical plots of conductance against magnetic field are shown in figures 3 and 4 for 
G12.34 and figures 4 and 5 for G14.32. Figures 3 and 5 show the case of small disorder, 
SU = 0.5, where as figures 4 and 6 show that for a large disorder, SU = 1.0. Plots 
for four different realizations of disorder are shown in each figure, one realization in 
each column. The upper plots are for superconducting systems. the lower plots are 
for the equivalent normal structures in which A is set to zero everywhere, but all other 
potentials are unchanged. In figures 3 and 5 the large conductances for the normal devices 
show that the transmission probabilities along the wire are high, so all the terms in the 
denominator of (13) are of comparable magnitude. Consequently the conductance changes 
sign whether or not there is a superconducting order parameter. In contrast, for the strongly 
disordered case shown in figures 4 and 6, where the small normal-state conductances 
imply negligible longitudinal transmission along the wires, the normal conductances remain 
positive, consistently with [ZO]. However, when the superconducting order parameter is 
switched on, sign changes reappear in the magnetoconductance. An interesting feature 
of figures 3 to 6 is that the sign changes always occur via a singularity in G, so the 
conductance never passes smoothly through zero. This is a consequence of the positivity 
of d in expression (13), which implies that a sign change can only occur when the 
denominator passes through zero. In practice, we expect the conductance to be bounded by 
the fact that when the current flow becomes large, we are no longer in the linear response 
regime. Nevertheless, our results suggest that close to a sign reversal, the four-probe 
magnetoconductance of superconducting wires in the ballistic and localized regimes will 
show sharp features. Since the effect does not depend on the degree of localization, such 
features should be measurable in both conventional and high-Tc superconductors. 

5. Summary 

We have shown how the fundamental current-voltage relations introduced in [Z, 41 can 
be recast in a form which resembles those of a normal structure and which makes no 
explicit reference to the condensate potential. Since the condensate can be regarded as 
a source and sink of charge, this is formally equivalent to a technique pointed out by 
Biittiker [19] which recursively eliminates those reservoirs that are not actively used in the 
conductance measurement. This procedure allows equations for multi-probe conductances 
to be written in the same form for both normal and superconducting samples, at the expense 
of relaxing certain restrictions on the signs of admittance matrix elements Starting from 
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0 

0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 

B- 
Figum 3. Plots of GI234 against applied magnetic field for the device shown in figure 1, with 
&U = O S .  Each column shows a different d i m t i o n  of disorder. The top plots show the 
case for a superconductor, the lower plots the equivalent devices with no superconducting order 
parameter but with all other potentials unchanged. 

0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 

B c 

Figure 4. As figure 3, but showing a plot of G11.32. 

these equations, we have derived conditions for the sign of the multi-probe conductance of 
samples connected to up to four reservoirs. The numerical results of figures 3 to 6 show that 
for superconducting materials in the localized and diffisive regimes, applying a magnetic 
field may change the sign of the longitudinal conductance. 
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Appendix 

In this Appendix we prove some properties of the transport matrix A' and its minors. 



10484 N K Aiisopp et ai 

0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 

B- 
Figure 5. As figure 3, but with SU = 1.0. 

0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 

B- 
Figure 6. AS figure 4, but with SU = 1.0. 

Al.  Proof that the diagonal elements of A' are positive 

This follows by writing 

0;; = ZRA + (1/2) C(d + Tjy + qt + 7'') 
jPi 

where all sums are taken over the range 1 to N unless otherwise indicated. Hence 
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Since all the terms are positive it follows that aii > 0. 
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A2. Proof of expression (10) 

The proof follows by defining N x N matrices C", Q(") and R") with n ,< N as follows: 

Since Qc") may be obtained from R") by subtracting row n of R@) from each of the rows 
(n + l), . . . . N we have that 

(5) det Q'"' = det I?("'. 

Also, by expanding along row n of C") we find 

det C'"' = det C("+') + det Q'"' 

and 
det C'"' = det C'"" + det R'"). (7) 

Hence 
N 

det C"' = det C'" + det RG). (8) 
j=1 

Expression (10) now follows by expanding det R(j).  

A3. Proof that detA; is independent of j 

We consider the j j th and NNth minors A: and Ah of A', and construct a new matrix B 
by adding all rows (except row j )  to row j in A;, then adding all columns (except column 
j )  to column j ,  and finally exchanging row j with row N - 1 and column j with column 
N - 1. Since adding the rows and columns leaves the determinant unchanged, while each 
exchange reverses its sign, we have that detB = detAh. However, as the sum of any 
column of A is zero, it follows that the sum of column i of Ah is ahi. Similarly the sum 
of row k of Ah is aiN.  Hence B =Ai,  and detA; = detAh. 
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